
 

 
 
 

The Performance of Structural Models in Pricing Credit 
Spreads 

 
 
 
 

Manuel Rodrigues 
(Cranfield University School of Management) 

 
Vineet Agarwal* 

(Cranfield University School of Management) 
 

Version: 15 January 2012 
 
 
 
*Corresponding author: 
Vineet Agarwal 
School of Management 
Cranfield University 
Cranfield 
MK43 0AL 
 
Tel: + 44 (0) 1234 751122 
Fax: + 44 (0) 1234 752554 
E-mail: Vineet.agarwal@cranfield.ac.uk 
 
  



 

 

 
 

ABSTRACT 
 

 

There is a lack of consensus in the literature regarding the performance of structural 

models even though they have been used as a standard in credit risk modelling for the last 

thirty years. This paper tests the performance of three structural models, Merton (1974), 

Collin-Dufresne and Goldstein (2001) stationary leverage ratio model and CreditGrades™ 

(2002) against the credit default swap spread using much larger dataset of 320 corporates 

over a longer time period than the existing literature.  

We find that, consistent with existing literature, while the structural models have 

significant explanatory power for the cross-section of CDS spreads, all three models 

underpredict the observed credit spreads, and the underprediction is not driven by any 

ratings category or sector. We also show that while the three models produce spreads that 

are highly correlated with each other, they carry information incremental to each other. 

However, our evidence demonstrates that other firm specific variables can explain a 

significant part of observed credit spreads indicating that the observed underpricing is 

driven by actual spreads reflecting additional information such as liquidity and residual 

credit risk. In fact, the actual spreads are lower than implied spreads once additional credit 

risk and CDS liquidity information is taken into consideration. 

 

Keywords: Credit spread pricing, Bid-offer spreads, Credit ratings, Structural model 

JEL: G12, G13, G24 

 

 

 



 

1. Introduction 
 
Corporate bonds are priced by charging a premium over the corresponding government 

bond yield (risk-free-yield).  This premium is determined by the creditworthiness of the 

corporate borrower. Commonly called “credit spread,” this gap represents the extent to 

which the company is at risk of defaulting on the bond, and compensates investors for 

bearing the risk.  

The first structural model of Merton (1974) for pricing corporate bonds assumes 

that a firm defaults if the value of its assets is below its outstanding debt at the time of 

servicing the debt. Although this model has been widely adopted for valuing corporate 

bonds, the underlying assumptions of the original model often do not reflect economic 

reality.1 Several new structural models have refined the original framework of Merton 

(1974) by relaxing one or more unrealistic assumptions. For instance, Black and Cox 

(1976) introduced the first passage model whereby default could occur before maturity. 

Geske (1979) considered the risky coupon bond as a compound option and defined the 

default barrier as the market value of remaining debts. Longstaff and Schwartz (1995) 

modelled stochastic interest rates following a mean reverting process, where coupon bonds 

were considered a weighted sum of zero coupon bonds.  Leland (1994), and Leland and 

Toft (1996) assume that firms could issue equity to service debt and that default occurred 

when the value of equity goes to zero. Finally, Collin-Dufresne and Goldstein (2001) drop 

the assumption of a constant default boundary, and model leverage as a stationary process. 

However, in spite of the growing number of structural models, there has been very 

limited empirical testing in the literature. Jones, Mason and Rosenfeld (1984) is among the 

first studies to test the predictive ability of the Merton (1974) model. Using data on 27 US 

firms with simple capital structures between 1975 and 1981, they find that the observed 

bond prices are much higher than those predicted by the model. Ogden (1987) reaches 

same conclusion using a sample of 57 new bond issues by US industrial corporations 

between 1973 and 1985. Lyden and Saraniti (2001) study a sample of 56 US corporates 

with a single outstanding bullet bond between 1988 and 1999. They also conclude that 

both, Merton (1974) as well as Longstaff and Schwartz (1995) models underpredict the 

observed bond spreads.  

                                                 
1 The model assumes, inter alia, default can only occur at maturity, interest rate is constant over the life of 
the option, default is never a surprise, the price of the underlying stock one period ahead follows a log-
normal distribution, trading in assets takes place continuously, and there are no transaction costs or taxes. 
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However, Eom, Helwege and Huang (2004) find contrary evidence by 

implementing five structural models on a sample of 182 bonds between 1986 and 1997.2 

They find that while Merton (1974) and Longstaff and Schwartz (1995) models do on 

average, predict spreads that are too low, the other three models produce estimates that are 

higher than those observed. However, they find that the absolute prediction errors of all the 

models are quite high, indicating poor predictive ability. Similarly, Delianedes and Geske 

(2001) look at the credit spreads of 470 bonds between 1991 and 1998, and find that 

Merton (1974) model estimates are able to explain only about 5% of the observed spread 

for AAA rated bonds and 22% for those rated BBB. They argue that bond spreads are 

mainly explained by market returns, market volatility, and bond liquidity. 

Ericsson, Reneby and Wang (2007) is the first study that uses credit default swaps 

in addition to bonds to test the empirical performance of structural models. Using a sample 

of 23 industrial bonds between 1997 and 2003, and the same five structural models as in 

Eom et al. (2004), they find no evidence of underprediction of CDS spreads. They also 

find that the results using bond spreads are sensitive to how the credit spread is measured. 

Using the spread over treasury, they find, consistent with existing literature, 

underprediction of bond spreads, however, there is no such evidence if the spreads are 

measured over the swap curve. Further, using CDS spreads, they find no evidence of role 

of liquidity or credit ratings in the residuals. 

In this paper we test the performance of three structural models in pricing credit 

default swaps. We select a generalization of Merton’s model (1974), since it is the seminal 

credit spread model. Collin-Dufresne and Goldstein’s (2001) stationary leverage ratio 

model is chosen given its apparent superior performance according to the literature (e.g. 

Eom at al., 2004; Huang and Zhou, 2008), and Creditgrades (2002) as it is the current 

standard model used by a wide range of credit market practitioners. 

We extend the existing literature in two ways. First, we provide a much cleaner test 

of the predictive ability of structural models by using CDS spreads rather than bond 

spreads used in the existing literature (with the exception of Ericsson et al., 2007). CDS 

spreads arguably provide a cleaner proxy for default risk because they are more liquid than 

corporate bonds and are not influenced by parameters such as call provisions or coupons. 

Secondly, our longer time period of 7 years that includes the current credit crisis period, 

and larger sample size of 320 corporates allows much stronger inferences. While we find 

                                                 
2 The models are Merton (1974), Geske (1977), Longstaff and Schwartz (1995), Leland and Toft (1996), and 
Collin-Dufresne and Goldstein (2001). 
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underpricing of credit spreads as in existing literature, we also provide evidence for the 

first time that this is driven by CDS spreads reflecting liquidity premium as well as 

residual credit risk information from credit ratings. Once these factors are taken into 

consideration, we show that actual CDS spreads are actually lower than the implied 

spreads. We also show our findings are not influenced by the current credit crisis.  

The rest of this paper is organized as follows: Section 2 presents the theory behind 

the Merton, Collin-Dufresne and Goldstein, and Creditgrades models; section 3 focuses on 

the models’ implementation, explains the data and methodology used; section 4 discusses 

the empirical results; and section 5 concludes. 

 

2. Theory and model description 
 
We test three market-based structural models, specifically Merton (M), Collin-Dufresne 

and Goldstein (CDG), and CreditGrades (CG). 

2.1. Generalization of Merton (1974)	3 

The Merton (1974) model assumes that a firm with an initial value of V0 issues a zero-

coupon bond with a face value of D and a maturity of T. The critical assumptions behind 

the model are that markets are perfect, that trading in assets takes place continuously, and 

that the firm’s value follows a geometric Brownian motion under a risk-neutral measure:  

 

  )(  tdzdtr
V

dV Q

t

t  
 (1)

 

 

where: 

r = the risk free rate,  

δ = the dividend yield, 

σ = the volatility of the firm value, and  

 tzQ
 = a Wiener process with a (r- ) drift. 

Default occurs at time T if VT < D. Bankruptcy costs are assumed to be a constant 

proportion ߙ of remaining firm value. The risky zero-coupon bond price is then given by: 

                                                 
3 The difference between the Merton (1974) model and its generalization is that the latter relaxes the no 
dividends assumption. 
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T = maturity in years, and 
∝ = bankrupcy costs 
 

 

2.2. Collin-Dufresne Goldstein (2001) 

This is a stationary leverage ratio model which assumes that firms tend to adopt a long-

term stationary leverage ratio, i.e., they tend to issue debt when their leverage ratio falls 

below some target, and are more hesitant to replace maturing debt when their leverage is 

above that target. The model incorporates the idea that firms may adjust their outstanding 

debt levels in response to changes in firm value, which makes the stochastic leverage ratio 

revert to a mean value of Ql in a constant interest rate framework. 

 

This approach follows the following firm-value dynamics: 

  Q
t

t

t dz dt r
V
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 (5)
 

The dynamics of other relevant variables under the risk-neutral measure are: 
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λ = the speed of adjustment to a company’s target leverage,4 and  

ν = the leverage reversion level. 

Equation (7) shows that kt is mean-reverting and its target level is given by  ty . When 

k is less than  ty , the firm increases the outstanding book value of debt, and vice 

versa. Further, the log-leverage ratio is mean-reverting, and hence stationary, with a mean-

reversion level of  
Q

l : 

  Q
tt

Q
t dz dt ll dydkdl 

 (8) 







 2
r

l

2

Q

 (9)
 

 
Where ߬ is defined as the random time at which l(t) reaches zero for the first time, 

triggering default.  

 

Assuming that a risky discount bond pays a fraction of ሺ1 െ ߱ሻ of the T-maturity risk-free 

bond at the time of default, its price can be written as: 
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Where  TlQ ,0  is the risk-neutral probability that default occurs before time T, given that 

the leverage ratio is 0l at time 0. Discretizing time into n equal intervals, and defining date 
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4 Which in this model is a mean reverting coefficient 



 

8 

 
 tiS

tiM
ai 




 (14) 

 
 
 tiS

tiL
bi 




 (15) 

 
   tQt eleltM    10  (16)

    tQ eltL  1  (17) 

   tetS  


 2

2
2 1

2  (18)
 

 

The term Q(l0,T) is the limit of Q(l0, T, n) as n .The qi terms in equation (13) are 

defined recursively, which makes it straightforward to program this valuation expression 

and to calculate risky discount bond prices. Although Q(l0.T) is defined as the limit of 

Q(l0, T, n) according to Longstaff and Schwartz (1995), the convergence is rapid; and 

numerical simulations show that setting n=200 results in values of Q(l0,T) and Q(l0, T,n) 

that are virtually indistinguishable. 

 

2.3. Creditgrades™ 
 
Creditgrades™5 (CG) belongs to the class of structural models derived from the Merton 

model. Similar to the Merton model, the CG model assumes that the firm’s value evolves 

according to a geometrical Brownian process. Default is defined as the point at which the 

value of the firm is below the default barrier, i.e., when it will not be able to meet its 

financial obligations. The default barrier is defined as the amount of firm assets that 

remains should the firm default.  The average recovery rate that the debt holders receive 

upon default is L*D, where L is the average recovery of the debt and D is the firm’s debt-

per-share. The global recovery rate is assumed to follow a lognormal distribution with an L 

mean and the standard deviation of λ. The standard deviation of the global recovery rate is 

a way of modelling the uncertainties that affect the proper default barrier level. This is one 

of the prominent improvements claimed by the CreditGrades™ model over the Merton 

model. 

                                                 
5 For details about the model, see Finkelstein et al. (2002) 



 

9 

 
 
The formula to determine a firm’s survival probability up to time t is 
 

Pሺtሻ ൌ Φቀെ୅౪
ଶ
൅ ୪୭୥ሺୢሻ

୅౪
ቁ െ d ∙ Φ ቀെ୅౪

ଶ
െ ୪୭୥ሺୢሻ

୅౪
ቁ (19) 

 
Where  

d ൌ ୚బ∙ୣಓ
మ

୐∙ୈ
    and    A୲ଶ ൌ σଶt ൅ λଶ 

 
The spread of the CDS with maturity T, ܿ∗ can be calculated as 
 

ܿ∗ ൌ ሺ1ݎ െ ܴሻ ∙
ଵି௉ሺ଴ሻା௘ೝ഍∙൫ீሺ௧ାకሻିீሺకሻ൯

௉ሺ଴ሻି௉ሺ௧ሻ∙௘షೝ೟ି௘ೝ഍൫ீሺ௧ାకሻିீሺకሻ൯
 (20) 

 

Where ߦ ൌ ଶߣ
ଶൗߪ  and the function G is given by 

ሻݑሺܩ ൌ ݀௭ା
భ
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భ
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With ݖ ൌ ටଵ

ସ
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ఙమ
 

 
Where Φ is the standard normal cumulative distribution function, ߪ is the standard 
deviation of the firm’s value. 

 
 
The yield to maturity of a zero coupon bond can be obtained using 

  TYT T

elP 0  (22) 

And the credit spread CS(T) is defined  

  rYTCS T   (23) 

 

3. Data and Methodology 

3.1. Sample selection 
 

Our sample consists of all US firms with 5 year CDSs between 2003 and 2010 and all 

required accounting data available. This yields a total of 320 firms from a wide range of 

sectors. The sample period is restricted by the credit default swap spread quotes that are 

available on Datastream only after 2002. Although Merton’s (1974) assumptions refer to a 

simple capital structure, we have not restricted our sample to such firms because a firm’s 

obligations to service the debt are usually bound by contractual agreements whereby a 
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default in one obligation would immediately trigger default in all debt obligations.6 

However, the impact of a complex capital structure requires a more careful analysis when 

it comes to determining each firm’s recovery value. The accounting data is lagged by three 

months to avoid the look-ahead bias. 

3.2. Model implementation 
 
Table 1 shows the inputs that are common to all three models, and those that are specific to 

each. 

Table 1 here 

 

 
Parameters common to the three models: 
 
 Maturity (T): We have used 5-year maturity CDSs, as they are most liquid. 

  
 Risk Free Rate (RFR): US five-year zero rate. 
 
 Volatility (ߪ): The asset volatility is estimated as in Bharath and Shumway (2008), i.e.: 

σ ൌ ୉

୉ାୈ
ൈ σ୉୯୳୧୲୷ ൅

ୈ

୉ାୈ
ൈ σୈୣୠ୲ (24) 

 

Each month from March 2003 to Setptember 2010, the equity volatility is estimated for 

each sample firm using daily stock returns over the past year (250 trading days) and then 

annualised. 

Debt volatility is estimated as in Bharath and Shumway (2008): 

஽௘௕௧ߪ ൌ 0.05 ൅ 0.25 ൈ  ா௤௨௜௧௬. (25)ߪ

 
 Leverage: Leverage is defined as the ratio of the book value of debt to the sum of the 

book value of debt and the market value of equity. 

Leverage ൌ ୆୭୭୩	୚ୟ୪୳ୣ	୭୤	୘୭୲ୟ୪	ୈୣୠ୲

୑ୟ୰୩ୣ୲	୚ୟ୪୳ୣ	୭୤	୉୯୳୧୲୷ା୆୭୭୩	୚ୟ୪୳ୣ	୭୤	୘୭୲ୟ୪	ୈୣୠ୲
		 (26)	

 
 Recovery value (= 1 - loss given default) : Debt recovery rate is defined as the payment 

to a class of debtholders, measured as a fraction of the face value of claims held by that 
debt class. Debt recovery can vary widely depending on existing creditor classes. 
Absolute priority requires that more junior creditors receive financial consideration in a 
distress restructuring only when more senior creditors are paid in full. As in Eom, 

                                                 
6 Lyden and Saraniti (2001) have tested Merton (1974) empirically with firms having complex capital 
structure and have used the same simplification (that all debt is retired at the maturity of the bond, with equal 
priority given to all creditors in the event of default). 



 

11 

Helwege and Huang (2004), we use a recovery value of 50% of face value, which is 
consistent with the average defaulted debt estimated by Moodys for US entities between 
1920-1999 in Keenan, Shtogrin and Sobehart (1999). 

 
Model Specific parameters: 
 
 Dividend yield (Merton and CDG) is defined as the annual dividend per share divided 

by the price per share. The dividend yield of the stock price is from the Datastream 
database. 

 
 Speed of adjustment  and target leverage, ߭ (CDG): The firm will adjust the 

outstanding book value in order to meet ߭ with a certain rate of . The speed of 

adjustment  measures the extent to which a firm has narrowed the debt gap between 
last period’s leverage and this period’s target leverage. We use the sector average as the 
target mean reverting leverage.7 

 
 Global recovery (CG): The global recovery is the average recovery of all debt 

obligations, assumed to be same as the recovery value. 
 
 Standard deviation of the default barrier (CG): This corresponds to the standard 

deviation of the default barrier, which we have assumed as 0.30. 
 
 

3.3. Measures of performance 
 
We test the performance of the models using prediction error (for bias) and mean absolute 

prediction error (for accuracy) against observed credit spreads. 

 

The monthly percentage prediction error for each firm in the sample is estimated as  

௜,௧ܧܲ% ൌ
ைௌ೔,೟ିூௌ೔,೟

ைௌ೔,೟
	 (27) 

The mean %PE is then estimated for each sample firm as: 

௜ܧܲ% ൌ ∑ %௉ா೔,೟
௡

௡
௧ୀଵ 		 (28) 

 
Similarly, the monthly percentage absolute prediction error (%APE) and mean %APE are 

estimated as: 

                                                 
7The mean reverting leverage is calculated as the Datastream sector average using data over the period 1970-
2010. The average leverage is defined as ்௢௧௔௟	஽௘௕௧

்௢௧௔௟	஽௘௕௧ାெ௔௥௞௘௧	ܸ݈ܽ݁ݑ	௢௙	ா௤௨௜௧௬
 





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௜,௧ܧܲܣ% ൌ
หைௌ೔,೟ିூௌ೔,೟ห

ைௌ೔,೟
	 (29) 

௜ܧܲܣ% ൌ ∑ %஺௉ா೔,೟
௡

௡
௧ୀଵ 	 (30) 

 

Where: 

ISi,t = Model implied credit spread for firm i at the end of month t. 

OSi,t = Observed credit spread for firm i at the end of month t. 

 

In order to formally test whether (1) model predicted spreads can explain cross-sectional 

variation in observed spreads, and (2) whether the model spreads under or over predict the 

actual spreads, we run the following Fama and MacBeth (1973) cross-sectional regressions 

each month: 

 

CDS୧,୲ ൌ 	α୲ ൅ β୍ୗ,୲	IS௜,௧ ൅ ε୧,୲  (31) 

 

Where: 

CDSi,t = actual CDS spread for firm i at the end of month t, and 

ISi,t = Model implied credit spread for firm i at the end of month t. 

 

If the model predicted spreads are able to explain the cross-sectional variation in observed 

spreads, we expect βIS to be positive and statistically significant. If the model spreads are 

on average lower than observed spreads, we expect α to be positive, while a negative α is 

expected if the models over estimate the spreads. 

 

While the implied spreads are pure measures of credit risk, the actual spreads are likely to 

reflect other firm specific information as well. We test this by introducing CDS liquidity 

and credit ratings in the pricing equation and run the following Fama and MacBeth (1973) 

regressions: 

 

CDS୧,୲ ൌ 	α୲ ൅ βୖ୅୘ୋ,୲	RATG୧,୲ ൅ β୐୍୕,୲	LIQ୧,୲ ൅ β୍ୗ,୲	IS௜,௧ ൅ ε୧,୲ (32) 

 

Where: 

RATGi,t = Standard and Poor’s credit rating for firm i at the end of month t, and 
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LIQi,t = Liquidity of the CDS of firm i at the end of month t measured as the difference 

between the bid and offer spread divided by the mid quote. 

Other variables are as previously defined. 

Following Ogden (1987) we convert credit ratings to a numerical scale from 1 (for rating 

AAA) to 7 (for rating CCC). We uses Moody’s and Fitch’s ratings (in this order) if S&P 

ratings are not available.  

If liquidity and credit ratings do not carry any information about CDS spreads in 

addition to that in the model predicted spreads, we expect βLIQ and βRATG to be zero. 

Finally, we test whether the outputs of more complex CDG and CG models carry 

any incremental information to that already in the simpler Merton model. We therefore 

introduce the predicted spreads from all three models in equations (26) and (27) 

simultaneously. However, the model is likely to suffer from multicollinearity due to high 

correlations between the spreads produced by the three models. To circumvent this 

problem, we use the orthogonalization procedure of Fama and French (1993). Specifically, 

each month, we first estimate the following regression: 

CG ൌ∝ଵ൅ γMerton ൅	εଵ (33) 

 

We then create the variable CG(0) as: 

CGሺ0ሻ ൌ∝ଵ൅ εଵ (34) 

 

Each month, we also estimate the following regression: 

 

CDG ൌ∝ଶ൅ ωଵMerton ൅ ωଶCGሺ0ሻ ൅	εଶ (35) 

 

And then create the variable CDG(0) as  

CDGሺ0ሻ ൌ∝ଶ൅ εଶ (36) 

 

The procedure gives CG(0) as a variable that carries information orthogonal to that 

in Merton, and CDG(0) as a variable that carries information orthogonal to both, Merton 

and CG.8  

 

 

                                                 
8 This procedure is equivalent to the Gram-Schimdt Algorithm for constructing an orthogonal basis. 
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4. Results 
 
4.1. Bias and predictive accuracy 

 

Table 2 presents the performance analysis based on the mean prediction and absolute 

prediction errors. The % mean prediction errors in column 2 are positive (13.8%, 62.2%, 

and 36.0% for M, CDG, and CG respectively) and statistically highly significant (t=3.0, 

21.2 and 7.6 respectively). Column 3 shows that the median prediction errors are also 

positive and statistically highly significant for all three models. The evidence is consistent 

with existing literature in suggesting the structural models underestimate the observed 

spreads, though the Merton model estimates are the least biased of the three. 

Column 4 presents the % mean absolute errors and shows that the Merton model 

estimates are less accurate than those of other two models (114.2% for M as compared to 

95.1% and 106.6% for CDG and CG respectively).9 The large magnitude of absolute 

prediction errors shows that the three structural models produce downward biased 

estimates that can be quite inaccurate. 

 

 

Table 2 here 

 

4.2 Test of predictive ability through cross-section regressions 
 
In order to test the ability of the structural models in explaining the cross-sectional 

variation in observed spreads, we run the regressions in equations (31) and (32) every 

month from January 2003 to September 2010. Model i in table 3 shows that the Merton 

model predicted spreads are strong predictors of observed spreads (t = 19.5). Similar 

conclusions can be drawn from models (ii) and (iii) with respect to implied spreads from 

CDG and CG models (t = 19.7 and 24.1 respectively). Further, model (iv) shows that while 

the CG models does not carry information incremental to that in M model, the CDG model 

                                                 
9 The median % absolute errors are much closer with 99.2% for M as compared to 92.3% for CDG and 
95.5% for CG. 
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does. The three models taken together are able to explain an impressive 45% of the 

variation in observed spreads. 

However, the intercepts in all four models in table 3 are positive and statistically 

highly significant (smallest t value is 12.0), confirming the evidence in table 2 as well as in 

existing literature, structural models underestimate the observed credit spreads.10 

 

Table 3 here 

 

Delianedis and Geske (2001) and Longstaff, Mithal and Neis (2005) find that the 

default risk explains a much larger proportion of observed credit spreads for firms with 

lower credit ratings. Since we have a small number of observations in some ratings 

categories, we aggregate the ratings in to three categories, A or better, BBB, and BB or 

worse.11 Table 4 panel A shows that while the three structural models tested here 

significantly underpredict the credit spreads in all rating categories, consistent with 

existing literature, the prediction errors are smaller for lower rating. Further, panel B 

shows that the absolute prediction errors are also lower for lower rating demonstrating 

increased prediction accuracy for such firms. 

 

Table 4 here 

 

The evidence presented so far demonstrates that actual credit spreads are, on 

average, higher than those predicted by the structural models. One potential explanation 

for this discrepancy is that while the implied spreads are pure measures of credit risk, the 

actual spreads may be influenced by other factors such as liquidity. Table 5 presents the 

results of Fama and MacBeth (1973) regressions when we introduce credit ratings and 

CDS liquidity in the model. Contrary to the findings of Ericsson et al. (2007), the evidence 

shows that the actual spreads contain both, additional credit risk information not captured 

by structural models as well as liquidity related information. While the structural model 

implied spreads are statistically highly significant in all four models in table 5, the 

coefficients on both, credit ratings (lowest t value = 9.5) as well as liquidity (lowest t value 

= 15.7) are positive and highly significant. The explanatory power of the models with 

                                                 
10 Untabulated results show that both CG and CDG carry incremental information using implied volatility or 
10 year CDS. The intercepts however, are always positive and highly significant. 
11 We have 2 observations with AAA, 14 with AA, and 6 with CCC rating. 
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credit rating and liquidity variables in addition to the structural model output jumps to a 

remarkable 76% or more. Interestingly, the intercepts are now negative and statistically 

highly significant in all four models (lowest t-statistic is 9.9), demonstrating that the 

apparent underprediction of actual spreads observed in the existing literature as well as 

table 3 above, is actually due to structural models missing some credit risk relevant 

information as well as the influence of liquidity. In fact, when liquidity and credit ratings 

are taken in account, the observed spreads are lower than those implied by the structural 

models. 

 

Table 5 here 

5. Robustness checks 
 
5.1. Sub-period analysis 

The credit crisis beginning with the collapse of Bear Sterns in March 2008 has had 

profound impact on the global credit markets. In this sub-section, we repeat our analyses 

separately for the period before and after the crisis. Results not tabulated here to save 

space show that before considering the impact of liquidity and credit ratings (as in table 3), 

the structural model spreads are lower than observed spreads in both periods. Including 

credit ratings and CDS liquidity measures in the regressions (as in table 5) shows, as 

expected, a much higher impact of liquidity on observed spreads in the post Bear Sterns 

period. Further, while the observed CDS spreads are, as for the full period, lower than 

implied spreads for both sub-periods once other firm specific variables are controlled for, 

the intercepts in the second sub-period are much larger in absolute terms than in the first 

period suggesting an even greater difference between observed and implied spreads in this 

period. 

 

5.2. Alternative specifications of asset volatility  

Asset volatility is a key driver of the spreads generated by the structural models. However, 

it is unobservable and there is no consensus in the literature on how it should be estimated. 

The CreditgradesTM technical document (2002), for instance uses historical equity 

volatility over 252 to 1250 days while Eom et al. (2004) use 30 to 150 days. Cao, Yu and 

Zhong (2011) however claim that using option implied volatility yields better structural 

model estimates. We therefore repeat all our analysis with 90 days, 150 days, and 1000 
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days historical volatility as well as option implied volatility using average of the first 

available at-the-money put and call options with over 1 month maturity. All our 

conclusions remain unchanged with alternative specifications and are not tabulated here to 

save space. Our results with 10-year CDSs are also qualitatively the same. 

 

5.3. Industry analysis 

Table 6 presents the sector wise median prediction errors.12 It shows that the 

underprediction of credit spreads is not driven by any particular industry, while Merton 

model underestimates the spreads for 25 of the 30 sectors, CDG does so for all 30 and CG 

for 29. 

 

Table 6 here 

 

6. Conclusions 
 

This paper tests the performance of three structural models using a sample of 320 U.S. 

companies in a wide spectrum of sectors between 2003 and 2010. In addition to the basic 

Merton (1974) model, we include the Collin Dufresne and Goldstein (2001) stationary 

leverage ratio model as it has been shown to be the best performing structural model (e.g. 

Eom et al. 2004), and the industry standard CreditGrades™ (2002) model. Unlike most of 

the existing literature, we use CDS spreads rather than bond spreads in our empirical tests 

because the former provide a much cleaner proxy for default risk. In addition, we do not 

restrict our sample to firms with simple capital structure and this allows our sample size to 

be much larger than extant studies leading to more robust conclusions. 

The results show that consistent with existing literature, all three structural models 

produce spreads that are much lower than the observed CDS spreads, and this persists in 

all rating categories and industry sectors. We also show that the three models produce 

large prediction errors in addition to the bias. However, the news for structural models is 

not all bad, we find evidence that structural models can explain approximately a third of 

the cross sectional variation in observed CDS spreads. We also find that the three models 

tested here carry information incremental to each other, as well as to credit ratings and 

liquidity. However, contrary to the evidence of Ericsson et al. (2007), we find that credit 

                                                 
12 We only include those sectors for which we have at least 5 observations. 
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ratings and liquidity, both have a very strong influence on cross section of CDS spreads. 

Together with the structural models, they can capture up to 80% of the variation. 

Interestingly, we find that once we account for liquidity and credit ratings, the 

underprediction of credit spreads is replaced by overprediction, i.e., the observed credit 

spreads are lower than implied spreads once other firm specific factors are controlled for.  

Since liquidity increases the explanatory power of implied spreads, we conclude 

that the observed credit spreads are not driven solely by firm default risk. Whether 

liquidity risk should be modelled depends on whether the ultimate goal of a structural 

model is to match observed spreads, or to price the firm’s fundamental risk of default and 

convert it into a credit spread. However, the inability of our structural models to capture all 

the information in credit ratings indicates these models do not capture even the default risk 

related information completely. 

Whether the difference between implied and observed credit spreads is due to other 

factors not-related to default risk or due to market inefficiency is a question we leave for 

future research. 
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Table 1: Merton, CDG and CreditGrades™ Model Inputs 
 

Model Inputs 

Merton  
CDG 
Stationary leverage  Creditgrades™ 

  Maturity (T) 
 Risk Free Rate (RFR) 
 Volatility (ߪ) 

 

 Dividend yield (DY) 
  Bankruptcy costs  Global recovery  

 Recovery rate 
 Leverage (D, debt-per-

share)  
 Standard deviation of 

the default barrier 

 Inverse 
leverage ratio 

 Initial leverage 
 Mean reverting coefficient  

 0,18=ߣ
 Recovery rate (=1 - ߱) 
 0,6 = ߥ 

 
  



 

22 

Table 2: Performance of the Merton, CDG and CG models 
The table presents the mean % prediction error ((observed spread – predicted spread) / 
observed spread), the median % prediciton error, the mean absolute and median absolute 
prediction error. The mean is trimmed at a 1% level The spreads are predicted with 
monthly frequency using Merton (1974) model (Merton), Colin-Dufresne and Goldstein 
(2001) model (CDG), and the CreditgradesTM (2002) model and compared to the observed 
5 year CDS spread. We use historical volatility for a 250 days horizon. 

 
 

 
 Mean % 

prediction error 
Median % 

prediction error 
Mean abs. % 

prediction error 
Median abs. % 
prediction error 

Merton 13.8 27.6 114.2 99.2 
 (2.96) (6.29)   
CDG 62.2 72.3 95.1 92.3 
 (21.15) (13.59)   
CG 36.0 52.8 106.6 95.5 
 (7.57) (10.93)   
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Table 3: Cross-sectional explanatory power of structural models 
Each month from January 2003 to September 2010, the credit spreads for each firm with a 
5 year CDS are generated using Merton (1974) model (Merton), Colin-Dufresne and 
Goldstein (2001) model (CDG), and the CreditgradesTM (2002) model. In addition, CG(0) 
spreads are generated each month by orthogonalising CG spreads with respect to Merton 
spreads, and CDG(0) is generated by orthogonalising CDG spreads with respect to Merton 
and CG(0). The Fama and MacBeth (1973) regressions are then conducted each month 
with the observed CDS spreads as the dependent variable. Figures in brackets are the t-
stats. We use historical volatility with a 250 days horizon. 
 
CDS୧,୲ ൌ 	α୲ ൅ β୍ୗ,୲	IS௜,௧ ൅ ε୧,୲ (31) 

 
 

 (i) (ii) (iii) (iv) 

     

Intercept 
0.008 0.007 0.008 0.007 

(13.55) (11.99) (16.48) (16.67) 
     

Merton 
0.842   0.747 

(19.50)   (12.71) 
     

CDG 
 1.271   
 (19.66)   

     

CG 
  0.682  
  (24.07)  

     
CDG(0)    0.473 

CG(0) 

   (7.57) 
    
   0.099 
   (1.23) 

     
Adj. R2 0.35 0.34 0.36 0.45 
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Table 4: Structural model performance by S&P rating 
The table presents the median percentage prediction errors using equation 27, and the 
median absolute prediction error using equation 29. The median percentage prediction 
error and the median percentage absolute prediction error are presented for ratings in three 
categories: A or better rating, BBB and BB or worse rating. The implied spreads are 
predicted with monthly frequency using Merton (1974) model (M), Colin-Dufresne and 
Goldstein (2001) model (CDG), and the CreditgradesTM (2002) model (CG) and compared 
to the observed CDS spread. Volatility is historical with a time horizon of 250 days. 
Figures in brackets are the z-statistics from Wilcoxon rank sum test for median = 0. 
 

 Credit rating 

 
A or better 

(n = 89) 
BBB 

(n = 138) 
BB or worse 

(n = 89) 
A. Median % prediction error 

M 43.6 23.6 27.0 
 (3.34) (3.71) (4.18) 

CDG 87.0 70.6 66.0 
 (6.36) (9.49) (7.25) 

CG 75.3 58.0 33.0 
 (5.48) (8.12) (5.01) 

B. Median % absolute prediction error 

M 112.3 104.5 85.0 

CDG 98.5 93.4 81.1 

CG 99.2 95.6 86.1 
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Table 5: Explaining the cross-section of CDS spreads 
Each month from January 2003 to September 2010, the credit spreads for each firm with a 
5 year CDS are generated using Merton (1974) model (Merton), Colin-Dufresne and 
Goldstein (2001) model (CDG), and the CreditgradesTM (2002) model. In addition, CG(0) 
spreads are generated each month by orthogonalising CG spreads with respect to Merton 
spreads, and CDG(0) is generated by orthogonalising CDG spreads with respect to Merton 
and CG(0). RATG is the credit rating of each reference obligation each month, and LIQ is 
the bid-offer spread for each CDS. The Fama and MacBeth (1973) regressions are then 
conducted each month with the observed CDS spreads as the dependent variable. Figures 
in brackets are the t-stats. We use historical volatility with a 250 days horizon. 

 
CDS୧,୲ ൌ 	α୲ ൅ βୖ୅୘ୋ,୲	RATG୧,୲ ൅ β୐୍୕,୲	LIQ୧,୲ ൅ β୍ୗ,୲	IS௜,௧ ൅ ε୧,୲ (32) 

 

 (i) (ii) (iii) (iv) 

Intercept 
-0.014 -0.013 -0.013 -0.012 
(-9.93) (-10.52) (-11.35) (-11.04) 

     

RATG 
0.002 0.002 0.002 0.002 
(9.54) (11.18) (11.83) (11.54) 

     

LIQ 
9.400 9.688 9.561 9.086 

(15.99) (16.80) (16.35) (15.66) 
     

Merton 
0.362   0.383 

(15.01)   (14.22) 
     

CDG 
 0.492   
 (17.09)   

     

CG 
  0.310  
  (19.72)  

     
CDG(0)    0.056 
    (1.57) 
     

CG(0) 
   0.206 
   (3.59) 

     
Adj. R2 0.76 0.77 0.78 0.80 
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Table 6 Structural model performance by sector  
The table presents the median percentage prediction errors using equation 27 and the z-
statistics from Wilcoxon rank sum test for median = 0 for 31 sectors (sectors in the sample 
with five or more firms). The spreads are predicted with monthly frequency using Merton 
(1974) model (M), Colin-Dufresne and Goldstein (2001) model (CDG), and the 
CreditgradesTM (2002) model (CG) and compared to the observed five year CDS spread. 
We use historical volatility with a 250 days horizon. 
 
 
 Median % PE z-statistics 

Merton CDG CG Merton CDG CG 
Aerospace & Defense 79.4% 92.8% 93.5% 2.20 2.37 2.20 
Automobiles & Parts 22.0% 61.0% 40.6% 1.86 2.37 1.35 
Beverages 98.4% 99.5% 99.7% 1.76 2.06 2.06 
Chemicals 13.0% 69.1% 50.3% 1.02 2.70 1.78 
Construction & Materials 35.7% 86.9% 63.0% 1.61 2.37 2.03 
Electricity 32.7% 62.7% 62.5% 1.19 3.41 3.41 
Electronic & Electrical Equipment 38.3% 84.2% 58.3% 0.94 1.90 0.94 
Financial Services -35.6% 23.7% -19.7% -1.38 0.76 -1.33 
Food & Drug Retailers 64.2% 93.7% 82.7% 1.96 2.85 1.96 
Food Producers 76.6% 98.4% 91.8% 2.58 2.94 2.94 
Gas, Water & Multiutilities -15.9% 63.2% 69.5% -0.34 2.20 1.86 
General Industrials 39.1% 77.8% 73.9% 0.41 2.03 1.48 
General Retailers 43.6% 82.1% 68.8% 3.72 2.92 3.85 
Health Care Equipment & Services 77.3% 92.1% 83.4% 2.85 2.94 2.94 
Household Goods & Construction -16.3% 33.7% 7.5% -0.11 3.10 1.34 
Industrial Engineering 14.3% 63.3% 31.7% -0.31 2.20 0.73 
Industrial Metals & Mining 14.6% 56.7% 33.0% -0.34 2.37 1.35 
Industrial Transportation 19.6% 62.5% 49.5% 0.70 2.52 2.10 
Life Insurance -1.1% 58.4% 18.0% -0.13 2.02 0.14 
Media 31.1% 73.6% 39.0% 0.89 2.94 1.33 
Mobile Telecommunications 44.9% 67.4% 50.5% 0.73 0.94 0.94 
Nonlife Insurance 22.7% 85.8% 56.6% 0.31 3.06 1.14 
Oil & Gas Producers 19.7% 60.9% 45.4% 2.05 3.82 3.78 
Oil Equipment & Services 11.3% 54.5% 38.9% -0.31 2.69 2.22 
Personal Goods 92.7% 100.0% 98.8% 2.02 2.06 2.03 
Pharmaceuticals & Biotechnology 87.5% 99.9% 93.9% 2.67 2.89 2.68 
Real Estate Investment Trusts -23.3% 47.8% 20.3% -2.05 3.17 2.65 
Software & Computer Services 46.9% 94.1% 48.9% 2.02 2.02 2.03 
Support Services 59.0% 39.4% 55.4% 2.02 1.75 2.02 
Technology Hardware & Equipment 53.2% 92.3% 69.9% 2.31 2.94 2.93 
Travel & Leisure 29.9% 69.0% 53.7% 1.43 2.20 1.29 

 


